THE JOINT ECONOMIC CONSEQUENCES OF CLIMATE CHANGE AND AIR POLLUTION

Rob Dellink Environment Directorate, OECD

Impacts conference 2017

Climate change and air pollution

- Joint analysis of climate change and air pollution to identify synergies and trade-offs
 - Climate change and (outdoor) air pollution are both important environmental problems, with global repercussions
 - Significant overlap in the drivers of emissions
 - Significant overlap in the affected sectors
- This presentation looks at economic interactions
 - Hard to find reliable biophysical information
 - Focus on baselines / cost of inaction, not co-benefits
 - Main contribution: consistent framework

Economic model

Projects sectoral and regional economic activity, and projects corresponding environmental pressure (such as emissions)

Assessment of economic consequences

Links biophysical impacts to changes in economic variables (such as changes in productivity of production factors)

Environmental model

Links environmental pressure to indicators of the state of the environment (such as temperature change, pollutant concentrations, ...)

Impact models

Links environmental indicators to (sectoral) biophysical impacts (such as changes in crop yields or incidence of illness)

- Computable General Equilibrium (CGE) model
 Multi-regional (25), multi-sectoral (35)
 Full description of economies
 - •All economic activity is part of a closed, linked system
 - •Simultaneous equilibrium on all markets
 - •Structural trends, no business cycles
- Dynamics
 - Solved iteratively over time (recursive-dynamic)
 - Capital vintages
- Link from economy to environment

•Greenhouse gas and outdoor air pollution emissions linked to economic activity

•Feedbacks from climate and air pollution damages on economy

Environmental Outlook to 2050 & CIRCLE

Selected impacts of climate change

Included in the modelling

- Agriculture: yield changes for 8 crop sectors, and fisheries
- Coastal zones: capital and land losses due to sea level rise
- Health: diseases and labour productivity losses from heat stress
- Energy demand
- Tourism demand

Stand-alone analysis

- Fatalities from heatwaves
- Urban damages from river floods
- Ecosystems: biodiversity (crude approximation)

Still not quantified

• Large-scale disruptive events, ...

Emissions and temperature increase

Source: OECD (2015), The Economic Consequences of Climate Change

Regional cost of selected climate impacts

Global GDP loss:

2035: 0.3-1.0%

2060: 1.0-3.3%

Source: OECD (2015), The Economic Consequences of Climate Change

Premature deaths from climate change: heat stress

Source: OECD (2015), The Economic Consequences of Climate Change

The Economic Consequences of Outdoor Air Pollution

Concentrations of air pollutants

Annual average total anthropogenic PM2.5 (µg/m3)

Concentrations calculated with TM5-FASST (EU JRC Ispra) Source: OECD (2016), The Economic Consequences of Outdoor Air Pollution

Projected market costs of outdoor air pollution, 2060

Premature deaths caused by outdoor air pollution

Source: OECD (2016), The Economic Consequences of Outdoor Air Pollution

The joint consequences

- 1. Effects of impacts & economic consequences on emissions e.g. climate damages reduce production and emissions of polluting industries
- 2. Effects of state of environment (temp., conc.) on impacts e.g. changes in weather affect ozone formation
- Effects of impacts on impacts
 e.g. pollution illnesses increase fatalities from heatwaves
- 4. Effects of economic consequences on economic cons. incl. CGE interaction effects and other non-linearities
 More significant interactions when considering consequences of policies!

1. Interactions through emissions

(percentage change wrt no-feedback baseline, 2060)

2. & 3. Biophysical linkages: for future research

- Physical (state-of-environment) interactions
 → Climate change is part of calculations of PM and O3 concentrations
 → Air pollutants are part of carbon cycle model
- Interactions through joint effects on health
 - → Lack of data to quantify; default assumption is additive effects
 - \rightarrow Distinguish between mortality and morbidity effects
 - \rightarrow Problem in assessing mortality-morbidity relationships
- Interactions in agriculture
 - \rightarrow Assess through use of crop models
- Other potential impact interactions
 → Tourism: effects from pollution unclear, as are interactions
 → Energy demand: significant effects only for policy scenarios?

4. Economic interactions: effects on GDP

4. Economic interactions: effects on production factors

4. Economic interactions: effects on specific sectors

- 1. Feedback effects through changes in emissions are very limited
- 2. & 3. Biophysical feedbacks unclear
- 4. Economic feedbacks limited at global level
 - Some regions hardly any economic interaction effects
 - Some regions significant trade effects (+)
 - Some regions significant economic adaptation effect (+)
 - Some regions significant non-linearity effect (-)

More significant interactions through reactions to policies!

THANK YOU!

11

For more information:

www.oecd.org/environment/modelling

rob.dellink@oecd.org

The OECD CIRCLE project

CIRCLE: Costs of Inaction and Resource scarcity: Consequences for Long-term Economic growth

- Calculating the costs of inaction:
 - Quantify how changes in environmental quality, climate change, natural resources affect the economy, and prospects for long-term growth

^(C) Regional and sectoral quantitative approach where possible, coupled with more general insights where needed

- Market impacts: production function approach
- Non-market impacts: valuation approach