

Health Impacts of Climate Change at the Local and Organisational level

Alistair Hunt

Department of Economics, University of Bath, UK

Impacts World, PIK, Potsdam October 12th 2017

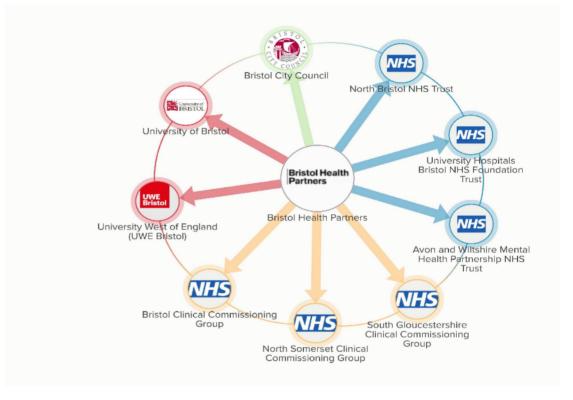
Presentation Outline

- Context of Study Bristol Health Partnership, UK
- Climate Risks
 - Overview
 - Detailed analysis
 - Costing impacts
 - Assessing Vulnerabilities
- Next steps
 - Decision Support for Adaptation

Context – Bristol Health Partnership

Bristol (popn = 450,000)

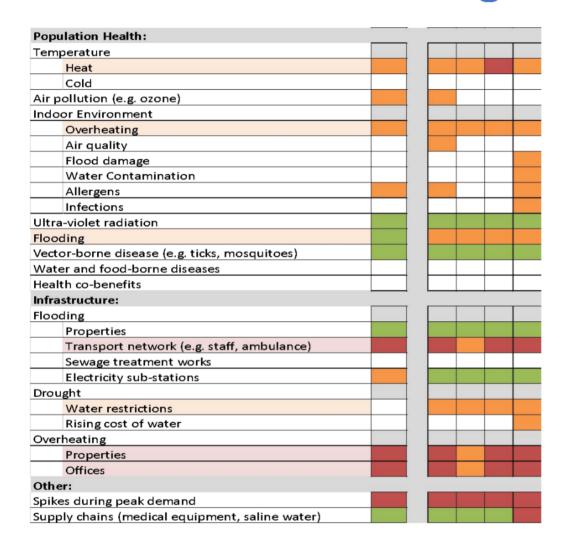
- 82% of people in good health
- Health and wellbeing inequalities across city
- Life expectancy: persistent gap between most and least deprived areas (gap of 8.9 years for men; 6.6 years for women).


Context - Bristol Health Partnership

BHP: strategic collaboration

- three NHS trusts,
- three clinical commissioning groups,
- two universities,
- local authority

Interest in climate change due to:


- Public health risks → demand for treatment
- Risks to services & workforce

Information on changing climate risks at the city level useful in

- a) raising awareness at board level to feed into strategic investment decisions, and
- b) supporting negotiations with strategic health authorities and the Department of Health.

BHP – Climate change risks: Overview

Key - Level of Concern	
High	
Medium	
Low	
Unknown	

Prioritisation process for quantitative analysis

- Stakeholder workshop to identify potential risks
- Presentation of identified risks to key BHP staff
- 3. Ranking of risks by staff
- 4. Selection for detailed analysis based on ranking and data availability
- → Flooding; Heat; Electricity Spikes

Methodology for quantitative analysis

No. of properties currently at flood risk. E.g. 1:20, 1:50, 1.100 year (historic probs.)	x	Cost of flooding: Unit values. E.g. property damage	=	A: Value of Baseline Risk - historic
No. of properties at flood risk. E.g. 1:20, 1:50, 1.100 year (historic probs.) Future periods with devt./socio-ec change	x	Cost of flooding: Unit values. E.g. property damage	=	B: Value of Baseline Risk – future, e.g. 2020, 2030, etc
No. of properties at flood risk. E.g. 1:20, 1:50, 1.100 year (probs. in future periods with climate change)	x	Cost of flooding: Unit values. E.g. property damage	=	C: Value of Risk with climate change – future periods

Data Sources:

Climate Projections: UKCP09; L(10), M(50), H(90).

Climate-Health relationships: Derived from UK Climate Change Risk Assessment

Exposure: Bristol Council GIS data

Monetary values: Defra (2008), inter alia

Gross impact cost = C; Net climate change impact cost = C - B

Results: Flooding

Public Health: Economic Costs from flooding in Bristol, 2016 - 2040 Medium scenario (£ million)

	1 in 30 year	1 in 100 year	1 in 1000 year
Injuries (non-fatal) annual	13.9	6.5	0.7
Injuries (fatal) annual	30.9	14.4	1.6
Mental (stress) annual	0.7	0.3	37.8
Total Health annual	45.6	21.2	2.3
Total expected annual cost £		114.1	
Total expected cost to 2040 £		2,853	

Results: Flooding

- •Flood risks: 1) river, 2) coastal and 3) surface water
- •Costs: 1) non-fatal, 2) fatal and 3) mental stress
 - Treatment costs ≈ 30%
 - Cost of lost productivity ≈ 20%
 - Pain & Suffering ≈50%
- Estimated BHP costs = £35 million p.a. or £600 million by 2040
- 40% increase with climate change

Number of health establishments flooded by ward in 2040

Costs to Health Buildings from flooding in Bristol, 2040 Medium scenario, (£ million)

	1 in 30	1 in 100	1 in 1000
Impact Costs	year	year	year
Building & Contents			
damage	0.07	0.04	0.004
Total expected			
annual cost £		0.2	
Total expected cost			
to 2040 £		4.9	

£3.2m without climate change

Bristol Ward	1 in 30 yr	1 in 100 yr	1 in 1000 yr
Ashley	2	2	2
Avonmouth	4	4	4
Bedminster	1	1	1
Bishopston	0	0	0
Bishopsworth	0	0	0
Brislington East	1	2	2
Brislington West	1	3	3
Cabot	2	4	5
Clifton	1	2	2
Clifton East	1	1	1
Cotham	0	0	0
Easton	1	1	2
Eastville	0	0	0
Filwood	0	0	0
Frome Vale	0	2	2
Hartcliffe	0	0	0
Henbury	0	2	2
Hengrove	2	2	2
Henleaze	0	1	1
Hillfields	1	1	2
Horfield	4	4	4
Kingsweston	0	0	1
Knowle	1	1	1
Lawrence Hill	0	1	1
Lockleaze	1	1	1
Redland	0	0	0
Southmead	4	5	7
Southville	5	6	5
St George East	0	0	0
St George West	1	1	1
Stockwood	0	0	0
Stoke Bishop	1	1	1
Westbury-on-Trym	0	1	1
Whitchurch Park	0	0	0
Windmill Hill	0	0	0

Results: Overheating

Public Health: Economic Costs from overheating in Bristol, 2016 - 2040 (£ million)

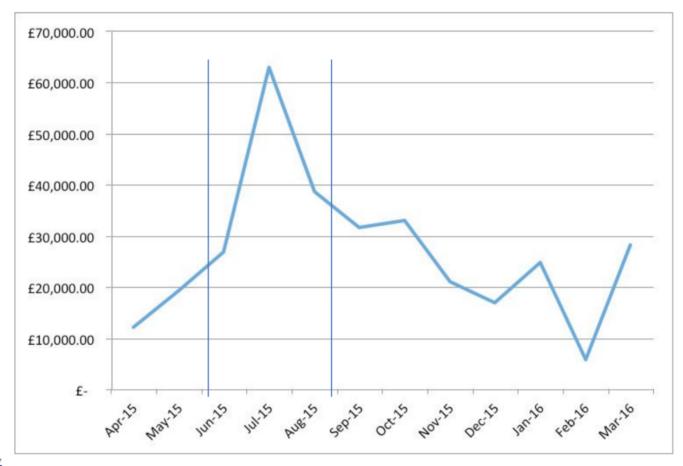
Climate scenario	Low	Medium	High
Mortality (no. of people)	10	20	45
Morbidity (no. of people)	980	2050	4600
Mortality (fatal) £ million	15	30	70
Morbidity (non-fatal) £ million	0.6	1.2	2.8
Total expected annual cost £ million	16	33	75
Total expected cost to 2040 £ million	400	800	1800

Results: Overheating

- Respiratory and cardio-vascular impacts
- •All mortality costs and majority of morbidity costs 'non-financial'

Estimated BHP costs = 5% of total:

- •Annual: c. £800,000 (low) / £1.8 million (med) / £3.8 million (high) p.a.
- <u>Cumulative</u>: c. £20 million (low) / £40 million (med) / £90 million (high)

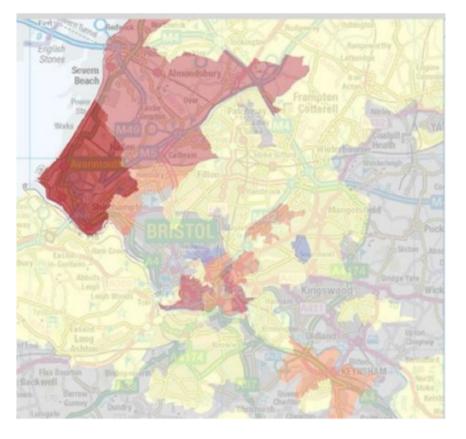

•+ risk to reputation?

Summer cooling of Bristol Royal Infirmary

+ £38,000 p.a. to 2040 (12% increase) from climate change

Who is at most risk from climate risks?

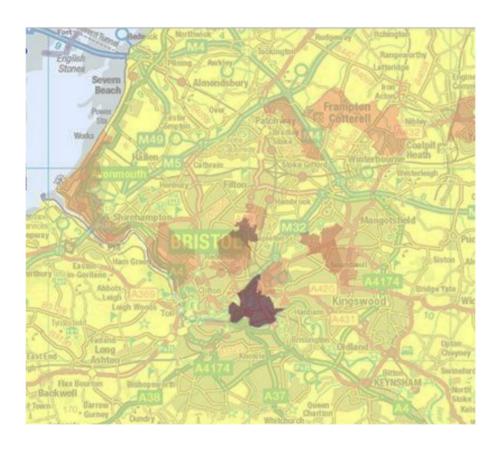
 Social vulnerability – how well people able to cope with/respond to events like floods and heat-waves


Drivers of vulnerability

- Personal features of individual, e.g. age & health, affects sensitivity to climate impacts;
- Environmental characteristics, e.g. availability of green space, quality of housing stock or elevation of buildings
- Social and institutional context, e.g. strength of social networks, the cohesion of neighbourhoods which affect people's ability to adapt.

Flooding vulnerabilities

Index of flood-related social vulnerability combined with potential for exposure to flooding from rivers and sea



(Source: climatejust.org.uk)

Heat vulnerabilities

Index of heat-related social vulnerability **combined** with potential for exposure to heat

Two areas in Bristol identified as acutely vulnerable to heat because of physical environment - correspond with percentage of high rise homes

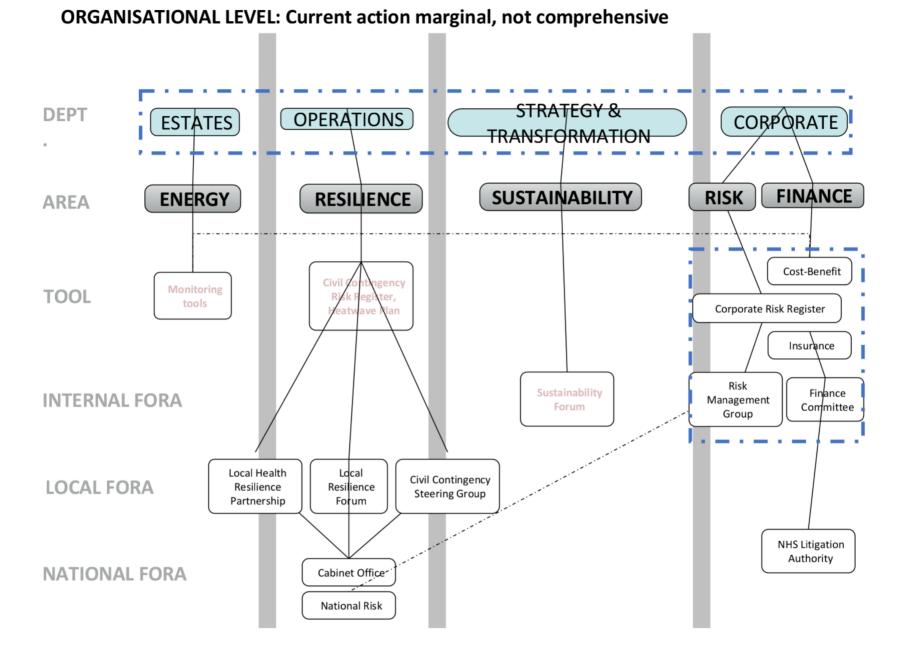
(Source: ClimateJust.org.uk)

PRESCRIPTION

(for prevention)

Bristol Health Partners

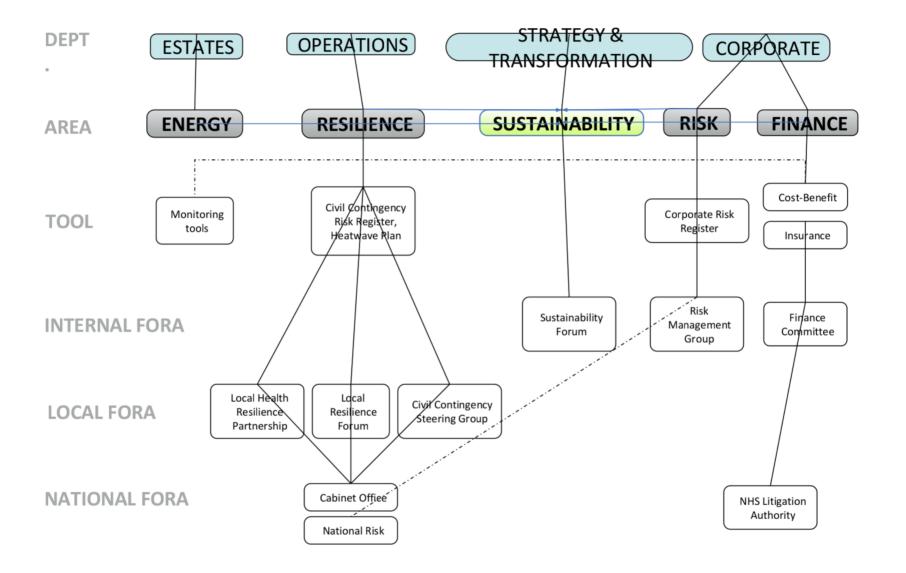
Systemic action on three levels



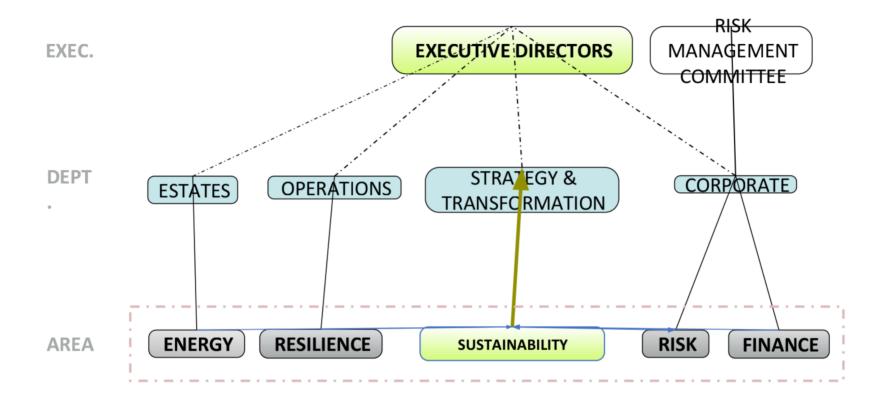
- 1. Expand cross-departmental forum for climate risk with Exec Director Leadership
- 2. Factor climate change in to risk management and emergency planning
- 3. **But...need clear cost-benefit** to action change within 1-5 year planning periods
- 1. Cross-organisational forum for climate risk with Exec Board Leadership
- 2. Understand 'attribution' (i.e. who pays what?)
- 3. Detailed risk assessment (inc. interdependence + quantification)

Engage with Government and National Agencies on, e.g.:

- ► National Formula
- ► NHS **Litigation** Authority
- ► Supply Chain (ISO Standards)



ORGANISATIONAL LEVEL:


Mapping cross-departmental responsibility for climate risk

ORGANISATIONAL LEVEL:

RECOMMENDATION: Expand Sustainability Forum

Conclusions/Reflections

- Growing appetite for organisational level analysis of climate impacts to inform both operational and strategic decisions
- Quantitative analysis of climate impacts possible, given sufficient data and modelling capabilities
- Resource- and politically constrained organisations lack motivation to consider longer-term risks
- → as informing community, we may need to emphasise observed trends & events as well as future projections

