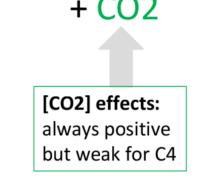

Deficiencies of models, data, methods, and applications

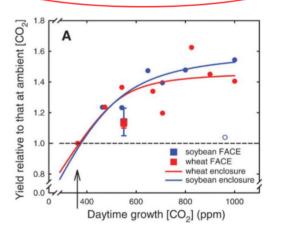
Impacts World 2017, October 11, 2017

Joshua Elliott DARPA/U. Chicago

How do emissions impact food production?


- Effects of emissions on crops are highly complex
 - Many of these terms have strong interactions!
 - Requires integrated approaches to modeling to inform integrated approaches to adaptation (esp. breeding)

Deficiencies of models, data, methods, and applications


- Known model issues
 - + Heat; drought; phenology
 - - Flood damage; uncertain CO2 response; diffuse radiation; high T sterilization; planting dates; cold temperatures
- Unknown model issues (could become major issues in future climate)
 - Complex CO2 responses (e.g. nutrients)
 - Ozone damage
 - Increased pest/disease?
 - Soil microbiome; etc.

CO2 and yield

- Many and diverse effects of CO2
 - photosynthesis rate in C3 plants
 - water use in all plants
- Soy sees largest yield benefit by far
- C4 only gets effective benefit from water use in drought years
- Limitations of CO2 effects
 - Effect rapidly flat after ~550ppm
 - Effects limited by nutrient availability
 - Food quality (protein, zinc and iron) declines with CO2 in C3 crops

Source	Rice	Wheat	Soybeans	C ₄ crops
Yield				
Kimball (1983)	19	28	21	
Cure and Acock (1986)	11	19	22	27
Cure and Acoek (1986)	35	21	32	4
FACE studies	9	13	19	6

Can breeding realize higher potential yield gains from CO2?

Deficiencies of models, data, methods, and applications

- Data issues (esp. for large scale studies)
 - Management data (fertilizers, irrigation, planting, cultivar, etc.)
 - Soil data and dynamics
 - Reference data quality
 - Generating/using proxies from remote sensing more effectively
 - Historical climate in data-poor regions
 - Climate change at the extremes

- Methodological issues
 - Model uncertainty
 - Accelerated phenology and adaptation
 - Calibration methods (esp. in data poor environments)
 - Inter-season dynamics
 - Calories to nutrients
 - Extreme events and variability
 - Orphan crops
 - Representations of irrigation
 - Linking approaches across scales

- Applications
 - Seasonal forecasting
 - Interactions between climate, extremes, tech trends, management, LUC, demand...
 - Data integration and Reanalysis
 - Deep model comparison
 - Coupled cross-domain decision support

Accelerated maturity and adaptation

- Accelerated maturity:
 always negative but
 adaptable w/ effort
- As temps , phenologies based on accumulated thermal units (GDD) experience accelerated maturity
 - Especially strong for cereal crops, weak for soybean
- Recent rate of genetic gain ~1/4 that required to keep up w/ expected warming
- Adaptation natural in breeding, but not perfect
 - ≥10 year "adaptation delay" expected w/o intervention (considered here as the **Business-As-Usual** case)

Can breeding keep up as climate change accelerates?