

C4: Known unknowns and unknown unknowns: what are our models missing, and how much

impact lies in the gaps?

Eric Galbraith Catalan Institute for Advanced Research (ICREA) /Universitat Autònoma de Barcelona

Main question: Our ability to estimate the costs of climate change

How well are we doing?

Are we getting 90% of climate change impacts? 10%?

Somewhere in between?

ISIMIP

Inter-Sectoral Impact Model Intercomparison Project

Agriculture Sector

Joshua Elliott 🗹 🜌

Agro-economic Modelling

Hermann Lotze-Campen 🗹 💌

Biodiversity

Thomas Hickler ☑ ☑
Christian Hof ☑ ☑

Permafrost

Coastal Infrastructure

lochen Hinkel 🕜 🔀

Health

Kristie Ebi 🗹 🜌

Joacim Rocklöv (vector-borne diseases and malnutrition) ☑ ☑

Lakes

Rafael Marce 🗷 💌

Don Pierson 🗹 🔀

Management Team

General Enquiries 🗹 🜌

Lila Warszawski (Project Manager) 🗹 🔀

Matthias Büchner (Data Manager) 🗹 🔀

Jan Volkholz (Data Manager) 🗹 🔀

Cross-Sectoral Science Team

Jacob Schewe (contact for marine ecosystems and water) ☑ ☑

Fang Zhao (contact for water) 🗹 🔀

Stefan Lange (contact for climate-input

Franziska Piontek (contact for energy)

Jonas Jägermeyer (contact for agriculture and lakes) ☑ ☑

Christopher Reyer (contact for forests and biomes) ♂ ☑

Water (global)

Simon Gosling 🗹 💌

Hannes Müller Schmied ☑ ☑

Water (regional)

Valentina Krysanova 🗹 🔀

Fred Hattermann 🗹 💌

Marine Ecosystems & Fisheries

Derek Tittensor (regional & global) ☑ ☑

Energy Supply & Demand

Ioanna Mouratiadou 🗹 💌

Michelle van Vliet ☑ ☑

Regional Forests
Christopher Reyer ☑ ☑

Global Biomes
Philippe Ciais ♂ ■

Christopher Reyer ☑ ☑

Impact models

Use predictive mathematical relationships to project the effect of different climate futures on things that matter to people

Impact models

Use predictive mathematical relationships to project the effect of different climate futures on things that matter to people

Uncertainties in the mathematical relationships used = Known Unknowns

The future is unpredictable

$$2100 = 2017 + 83$$

$$2017-83 = 1934$$

Global air temperature

Source: climate.nasa.gov

Physics-based fish model (BOATS) + technological improvement in fishing

Climate change is one of many moving parts

- Other factors (social, economic, technological) will probably dominate the next 83 years of history
- It is likely that some social, economic and technological changes will interact with climate change impacts to make them less/more severe

Workshop outline

• Short talk from Joshua Elliott (AgMIP)

• Discussion 1: Dirty Laundry

• Discussion 2: Here Be Dragons

Joshua Elliot DARPA / University of Chicago

Dirty Laundry

• How much confidence is there in each sector's ability to model impacts?

• What are the biggest uncertainties?

Google document

https://docs.google.com/document/d/1ECCttlZKNB1i862gbKoywxptVjNqhmTPgnzSNgYkqO8/edit

Here be Dragons

Permafrost

Global biomes

Health

Biodiversity

Lakes

Regional forests

Energy supply & demand

Water

Agro-economics

Agriculture

Marine ecosystems & fisheries

Coastal infrastructure