Climate change cost: A CGE bottom-up approach MilAi Project

Shinichiro Fujimori, Jun'ya Takakura, Tomoko Hasegawa, Naota Hanasaki, Kiyoshi Takahashi and Yasuaki Hijioka National Institute for Environmental Studies 11, October, 2017 Impact World 2017 @ Potsdam

Climate change impact economics

Figure 10-1 | Estimates of the total impact of climate change plotted against the assumed climate change (proxied by the increase in the global mean surface air temperature); studies published since IPCC AR4 are highlighted as diamonds; see Table SM10-1.

- Enrich the damage function information
- Global and multi-sectoral assessment
- RCP/SSP framework
- AIM/CGE (General Equilibrium model) + other physical models (e.g. hydrology model)

Overview of the study

palgrave communications HUMANITIES I SOCIAL SCIENCES I BUSINESS

ARTICLE

Received 26 Sep 2015 | Accepted 29 Mar 2016 | Published 17 May 2016

DOI: 10.1057/palcomms.2016.13

OPEN

Quantifying the economic impact of changes in energy demand for space heating and cooling systems under varying climatic scenarios

Tomoko Hasegawa¹, Chan Park², Shinichiro Fujimori¹, Kiyoshi Takahashi¹, Yasuaki Hijioka¹ and Toshihiko Masui¹

Energy demand

SSP2 global total

- 0.9% GDP loss in RCP8.5
- 0.1-0.2% loss in low emissions scenarios
- The negative impact mainly comes from cooling demand increase

How does socioeconomic development influence?

Labor productivity

GDP loss associated with labor productivity loss

- Regardless socioeconomic conditions, economic loss is large $(2.6 \sim 4.0\% \text{ of GDP})$
- Magnitude is comparable with climate mitigation cost

Economic implications of climate change impacts on human health through undernourishment

```
Tomoko Hasegawa<sup>1</sup> · Shinichiro Fujimori<sup>1</sup> · Kiyoshi Takahashi<sup>1</sup> · Tokuta Yokohata<sup>2</sup> · Toshihiko Masui<sup>1</sup>
```

Received: 19 May 2015 / Accepted: 12 January 2016 © The Author(s) 2016. This article is published with open access at Springerlink.com

Undernourishment

Economic impacts of additional medical expenditure, decrease in population and labor force

- 4 Crop models are considered
- Within the CGE, undernourished people, medical cost and labor loss are endogenized
- Global GDP change is small
- Large heterogeneity across regions

Preliminary results

- Included up to now
 - Energy demand,
 - Labor productivity
 - Crop yield change
 - Hydropower
 - Undernutrition
- Will be included
 - River Flood
 - Coastal damage
- In AR4
- Added after AR4

- The magnitude is almost similar or slightly bigger
- RCP8.5 is more than mitigation cost.
- Extreme and catastrophic events are not

Discussion

- The need for considering regional variety
- Offset issue
 - ✓ region and sector negative and positive values are aggregated
- Temporal and generation aggregation issue
- Extreme and catastrophic events are not included

ご清聴ありがとうございました Thank you for your attention

About MiLAi

http://s-14.iis.u-tokyo.ac.jp/eng/

Backup

Effects of climate change to food and human health

Prevalence of Undernourishment

- Food consumption will decrease; PoU and DALY will increase in RCP8.5.
- The effects are small in RCP2.6.

LIMFuture DALY depends on socioeconomic conditions rather than climate conditions.

Crop yield change (Aggregated major 5 crops): CYGMA model output

Work time loss based on WBGT change (outside works)

Cooling and Heating demand: Residential

(Energy service demand) =
 (Population) *(floor area/cap)*(degree day)*(Device penetration rate)

- Population: SSP2
- Per capita floor area(McNeil et al)

Fig. 1. Residential floor area per capita vs. GDP per capita: data points and fit to data.

Device penetration= (climate condition) *(air conditioner availability)

(Isaac and van Vuuren, 2009)

Methodology

- AIM/CGE coupled with an end-use type model
- In the model, energy demand is changed according HDD&CDD changes.

Crop yield change

S Fujimori, T Iizumi, T Hasegawa, J Takakura, K Takahashi, Y Hijioka, Macroeconomic impacts of climate change associated with changes in crop yields, Climatic Change, Under review

Crop yield change effect

