

A Crop Production Forecasting Tool for Adaptation and Mitigation Strategies in Scotland

Davide Cammarano, Mike Rivington, Keith Matthew, Mike Young, Geoff Squire

Introduction: Background

- The most important row crop in Scotland is Spring barley (Hordeum vulgare, spp)
 - main usage of barley being for animal feed and the drinks industry (RESAS, 2016)
- These results are the first part of a study on using a simulation tool for adaptations and mitigation strategies as part of the Scottish Government's policy;
- And as a tool for risk-analysis of barley production at National level involving the Whisky Industry;
- One important aspect to the stakeholders (before using the tool) was the model spatial evaluation.

Methodology: Data

Weather data:

 Gridded data (5km x 5km; 1994-2014) UK Met Office for maximum and minimum Temperature, and rainfall (UKCP09). Solar radiation purchased from SolarGIS (www.solargis.com).

Soil data:

 James Hutton Soil database (50,000+ soil samples from 14,000 locations across Scotland dating back from the 1930s). Information used (0-100 cm) were: Soil texture, soil organic carbon, soil pH, soil N, coarse fraction. Data summarised by individual Soil Series (Taxonomic unit) to provide attribute data for each for a range of soil physical and chemical properties

Land use and overlay soil properties:

- Land Capability for Agriculture Map (1:250 000)
- Identified 333 soil types that occur in the barley growing area.

Crop model:

- DSSAT v4.6 was used (CERES-Barley)
- The crop was calibrated using the Barley growth guide (AHDB, 2015*)
- Evaluation will be discussed on the next slide.

Methodology: spatial evaluation

We will utilise observed yield data for the whole growing area. It is going to be aggregated at a given resolution (we cannot use point-based because of privacy issues we cannot identify farmers' fields). In addition, the following data will be used:

Results: spatial evaluation

16000

14000

12000

10000

8000

6000

4000

Observed

Simulated

Crop biomass (Farm#7)

N.B. The observed yield is the average of 9 points. We will add the standard deviation (SD). By comparison, the spatial field showed a SD between 500 to 1200 kg ha⁻¹

Both Biomass and N uptake seems to be well estimated at farms #5 and #7

Results: example of simulations

Nitrogen Stress on growth

If properly evaluated it can be also used to perform specific runs at given locations. In this example, a yield gap analysis at Farm#5 was performed.

Water Stress on growth

Next steps:

- Next step is to finalize the spatial evaluation by May/June 2018;
- Beginning to demonstrate how this tool can be used for adaptation strategies and values of adaptation under current climate and future climate;
- Work along with the soil scientists from Aberdeen University and James Hutton Institute to study mitigations strategies for Scotland;

Acknowledgments:

- This work was funded by the Rural & Environment Science & Analytical Services Division of the Scottish Government;
- The UK Meteorological Office for the weather data;
- Robert Reid for kindly providing spatial data.

