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Introduction and Motivation

»The world’s population is growing, becoming
richer, and changing their food preferences

> Irrigated agriculture has the potential to produce
more on less land

»70% of water withdrawals come from irrigated
agriculture

» Demands from other sectors will increase (WFaS)

»\What are the goals of the SDGs?

» Can we identify tradeoffs among goals that focus
on water for human and environmental uses?



Approaches to examining the
SDG linkages and trade-offs
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Water: Good to the last drop and used to the
last drop
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Land: produce more with less inputs and
with less impact
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Methods
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Conceptual Framework

Shared Socioeconomic Pathways:
GDP, population, consumer preferences, irr.
efficiency, tech. progress for crops and
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Global Biosphere Management
Model (GLOBIOM)

> Global scale model based detailed spatial resolution (>200k cells)
> Partial equilibrium
> Agricultural, wood and bioenergy markets / ﬂ
» 30 world regions ‘Ldﬁi@ |
> Bilateral trade flows based on spatial equilibrium approach .org
> Bottom-up approach
> Explicit description of production technologies a la Leontief
» Technologies specified by production system and grid cell
> Linear programming approach
» Maximization of consumer + producer (incl. trade costs) surplus
» Non linear expansion costs
> Optimization constraints
> Base year: 2000
»Time step: 10 years
»Time horizon: 2030/2050, but also 2100
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< Population, GDP, consumer preferences >
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Representing irrigation as a crop
production system

> [rrigation water demand by crop
» Crop water requirement calculated by EPIC

> Climate change: change in precipitation, temperature
irrigation requirement (5 GCMs)

» Monthly water demand based on crop calendar by EPIC

> [rrigated cropland area from SPAM (IFPRI) and calibrated with
FAO statistics
> [rrigation by systems
» Basin, furrow, sprinkler, drip

> Differentiated by cost, efficiency, and crop and biophysical
suitability (Sauer et al. 2010)

> Suitability at simulation unit and homogenous response
unit level



Representing biophysical and
economic scarcity

> Biophysical scarcity
> Water use is physically limited by water available by source at the land unit
> Water Source: source of irrigation supply: surface and groundwater (Siebert et al 2010:
share of land supplied by groundwater)
> Surface water availability from LPJmL
> LU level (200 x 200 km); monthly availability
> |IJASA’'s CWM (IS-WEL)

» Demand for water from other sectors:
» WaterGap and PCR-GLOBWB: domestic, industry (water for power plant cooling is included) for

SSP2 (Wada et al. 2016: WFaS)
> Environment flows (Pastor et al 2014: VFM)

» Economic Scarcity
> Increase in the demand/use of surface water increases the water price at the

regional level
> |IASA’s ECHO model (IS-WEL)
> Irrigation demand aggregated and calibrated to Aquastat (year 2000 at country

level)
> Shifted proportionally to changes in biophysical availability for future projections
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Representing temporal
characteristic of water

km~™3
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Why do we care about the
monthly time step?
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Water demand from other sectors
(domestic, industry) is growing and in some
cases exceeds the surface water available
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Water demand for irrigation may follow
similar global patterns, however water is

local |
Water demand for irr from Change in water demand
in 2050 (km~ 3) for irr from 2000 to 2050
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Water Exploitation Index: highlighting where
ag exceeds environmental flow
requirements
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Ag (irrigated) production limited to residual

water after domestic and industry but no
FFR
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Ag (irrigated) production limited to water
left after domestic and industry but no EFR
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L




Ag (irrigated) production limited to water
left after domestic and industry but no EFR
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Ag (irrigated) production limited by water
demand from all other sectors and
protection of the EFRs:

Fond Seciiritv

3000
2900

2800

2700

2600

2500

2400

2300

2200

2100

A
A IS S ST

2000

2030 2040 2050

subSaharanAfr

W SSP1 MoCC  BISSP1 CCEFR W SSP2 NoCC  BSSP2? CCEFR S5P3 NoCC S5P3 CCEFR

13 October 2017 palazzo@iiasa.ac.at

I.:ﬁ Impact Worlds Conference 2017 28



Irrigation and environmental
flows: trade as a mitigation
option

Former Soviet Union
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In review.
Balancing food security and water for the environment under global change



Conclusions

> Future climate change may make more water available in but
not always when it can be utilized by agriculture

» Temporal issues matter for the environment and agriculture

» Demand for water from other sectors will increase in places
where there is already water scarcity

> Increasing the competition with agriculture

» Protections of environmental streamflows can have
consequences on food availability

» Though to some extent trade can mitigate these consequences
> Next steps and limitations

> water supply costs ([IASA’s ECHO model)

> Further testing with ISIMIP GHMs under wider range of GCMs

» Dynamic crop calendar

> Water storage (IIASA’s CWM)
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Thank you!

Amanda Palazzo (palazzo@iiasa.ac.at)

Research Scholar, Ecosystems Services and
Management Program
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