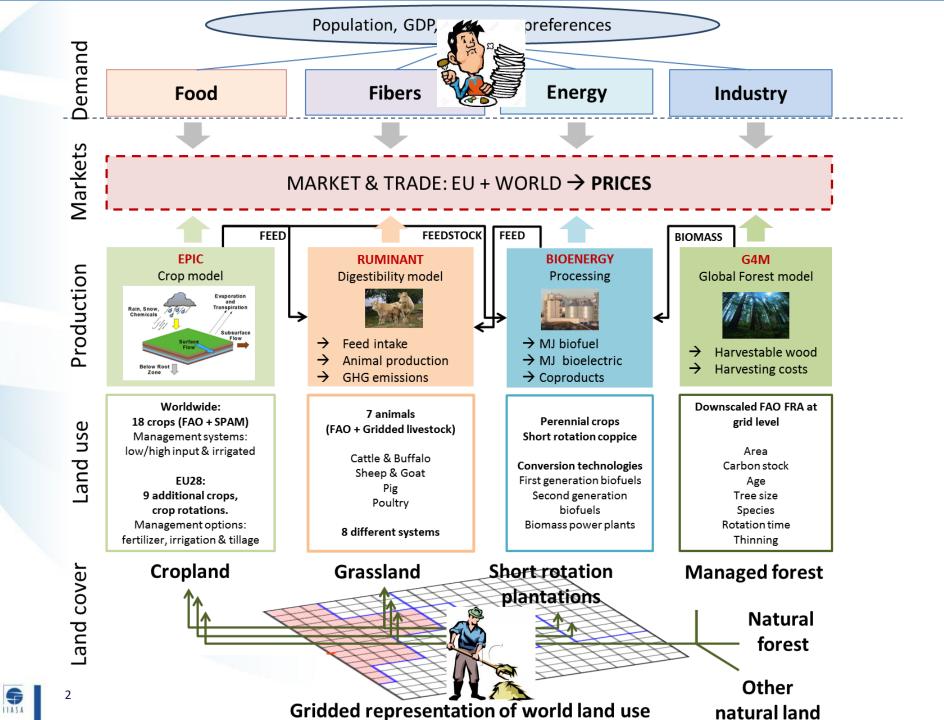
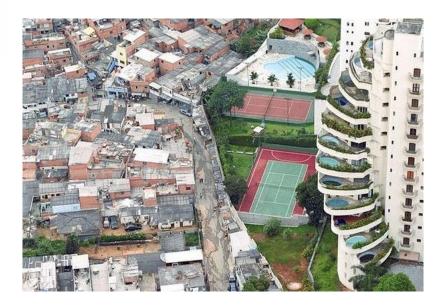


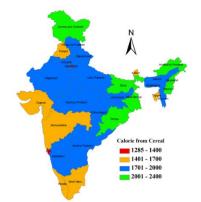
International Institute for Applied Systems Analysis www.iiasa.ac.at Impact World 2017 Conference 13 October 2017, Potsdam


Improving representation of socioeconomic heterogeneity in integrated assessment models

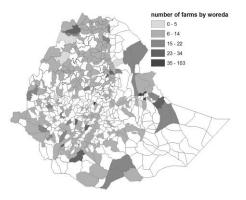
An illustration with GLOBIOM

Hugo Valin Ecosystems Services and Management Program valin@iiasa.ac.at


In collaboration with IIASA colleagues Petr Havlik, Aline Mosnier, Esther Boere, K. Borkotoki, Narasimha Rao, Samir KC, Kieswetter G., Michael Obersteiner...

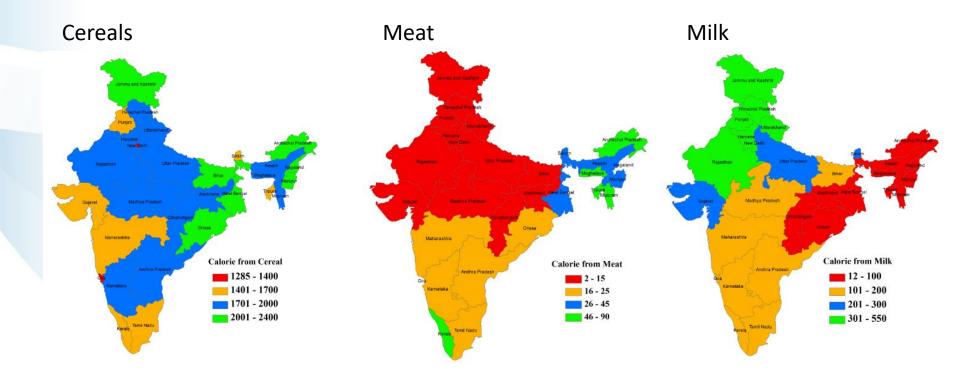

Socioeconomic heterogeneity matters for global change analysis

- Different vulnerabilities
 ⇒ different impacts of global
 changes and related policies on
 well-being
- Different preferences / consumption patterns
 ⇒ different impacts on the environment



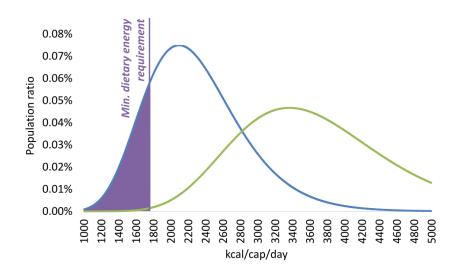
Two examples of integration of socioeconomic heterogeneity in GLOBIOM

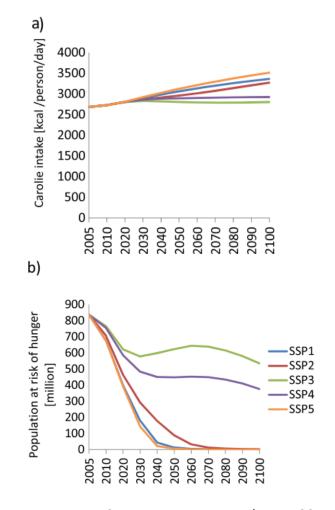
Demand side: application to India
 Work from IIASA cross-cut project



Supply side: application to Ethiopia
 Boere E., Mosnier A., et al.

Application to food demand in India

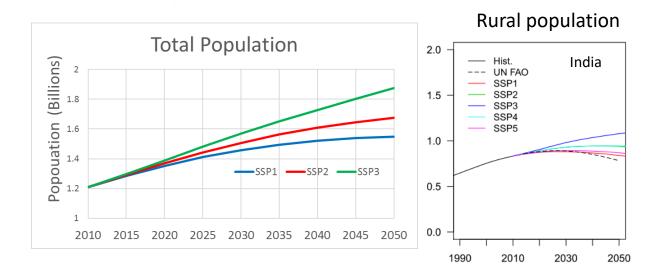

- India 2015 = 1.31 billion consumers (18% of global population)
 - Dietary patterns vary per region, socioeconomic and cultural group...



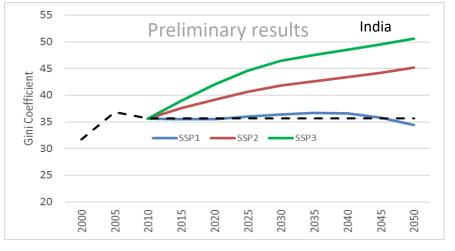
ITASA

Socioeconomic heterogeneity and food demand

- Current progress to take account of food distribution heterogeneity
 - FAO approach fo food distribution
 - Adapted to IAMs by Tomoko Hasegawa (NIES)



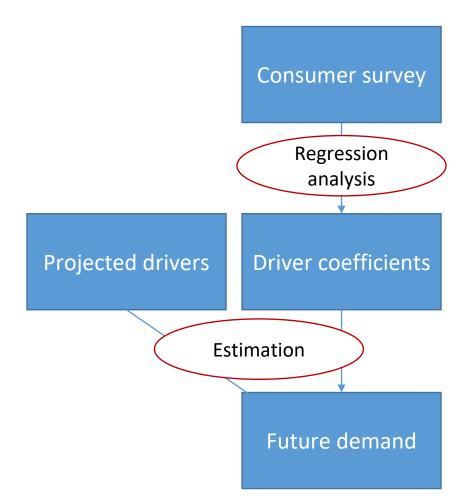
Source: Hasegawa et al., ERL, 2015


LIASA

Expanding SSP set of drivers

- Population
- GDP per capita
- Education
- Age
- Sex
- Urbanisation

- Inequality (Gini)
 - ▶ Rao et al., 2016
 - Drivers: TFP, education, trade openness...

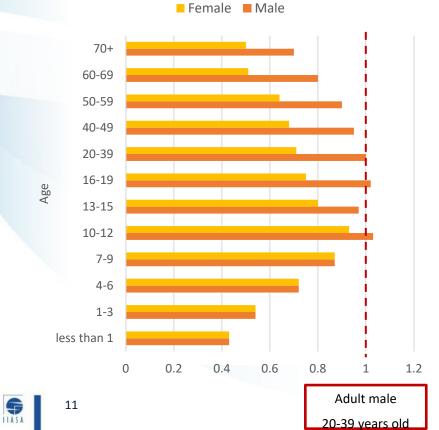


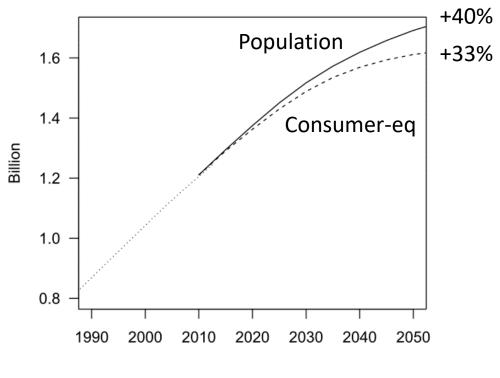
Source: Rao et al., in review.

ITASA

Analyzing and projecting India diets with SEH

- Historical analysis using Consumer
 Expenditure Surveys on 1993-2012
- SEH drivers:
 - Income
 - Education
 - State location
 - Place of residence (urban rural)
 - Religion
 - Labor occupation (agri/non agri)
- 11 food groups
- Two-stage regression (probit + linear regression) to assess:
 - Whether consumers purchase or not a food product
 - If they purchase a food product, what quantity?




Importance of age and gender

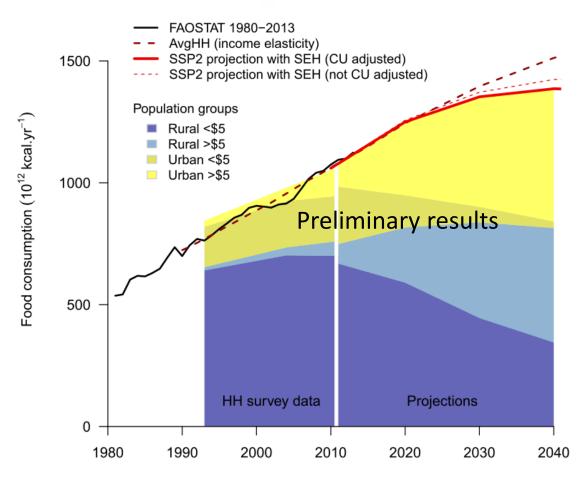
 Projecting food demand requires taking into account heterogeneity in food requirements depending on age and gender

Physiological food requirements

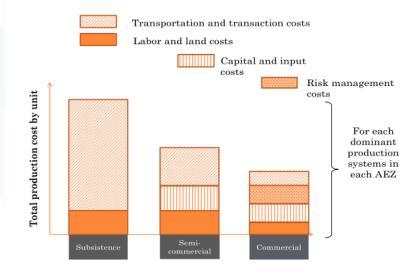
Consumer-eq vs population growth

Source: Borkotoki et al., in prep.

Determinant per product


+++: >50%, ++: 10% to 50%, +:1% to 10% ~: -1 to 1%, -: -10 to 1%, --: -50% to -10%, ---: < -50%

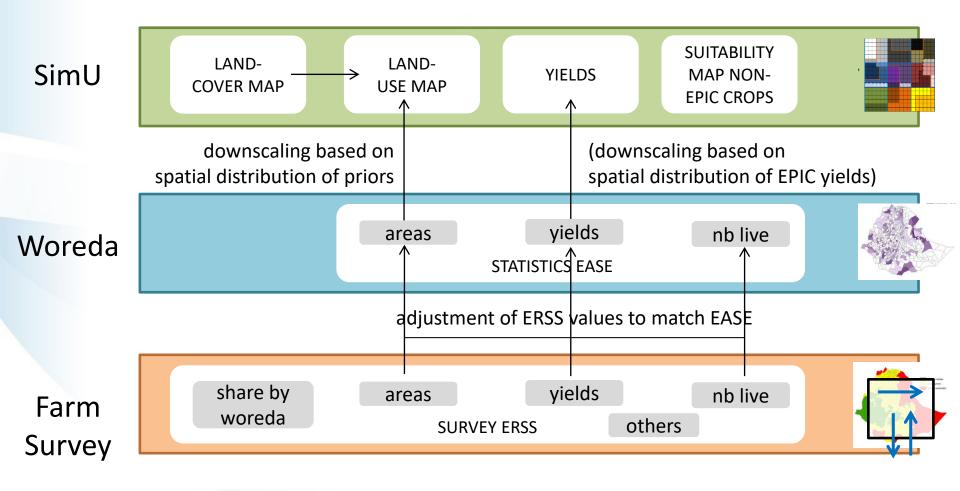
	cereal	pulses	milk	sugar	oil	egg	meat	veg	fruit	misc	proc
Intercept	1864	83	425	187	148	11	14	78	31	59	17
Time (10 years)	~	~	-	-	(+)	~	-	-	-		-
Residence											
Rural(Ref)											
Urban		-			2 + 9	-	_	-		>	(++)
Education of HH											
Head	\wedge		\wedge				\wedge		\wedge		
No education	/ ++ \	+	/-\	-	-	-	/++ \	~	/		-
Incomplete primary	+	•	- \	•	~	+	+	+	1 - 1	++	+
Complete primary	+	•		~	-	-	+	~	-		+
Completed lower secondary				+		_	+				_
Complete upper								•			·
secondary(Ref)											
Post-secondary	<u> </u>	-	\ + /	-	-	+	\bigcirc	-	\+/	++	+
Expenditure Group											$\langle \rangle$
<750											/ \
750-1000											/ \
1000-1250	-									-	
1250-1500(Ref)											
1500-2000	+	++	++	++	++	++	++	++	++	+	++
2000-2500	+	++	++	++	++	++	++	++	++	++	+++
2500-5000	+	++	+++	++	++	+++	+++	++	+++	++	+++
5000-7500	++	+++	+++	+++	+++	+++	+++	+++	+++	++	+++
7500-10000	++	+++	+++	+++	+++	+++	+++	+++	+++	++	+++


Main Results : Inclusion of SEH Matters

 Extent of food demand overestimated without considering heterogeneity

Supply side

- What are the main characteristics of farmers behind production features?
- What are the impacts on various policies on transition pathways?

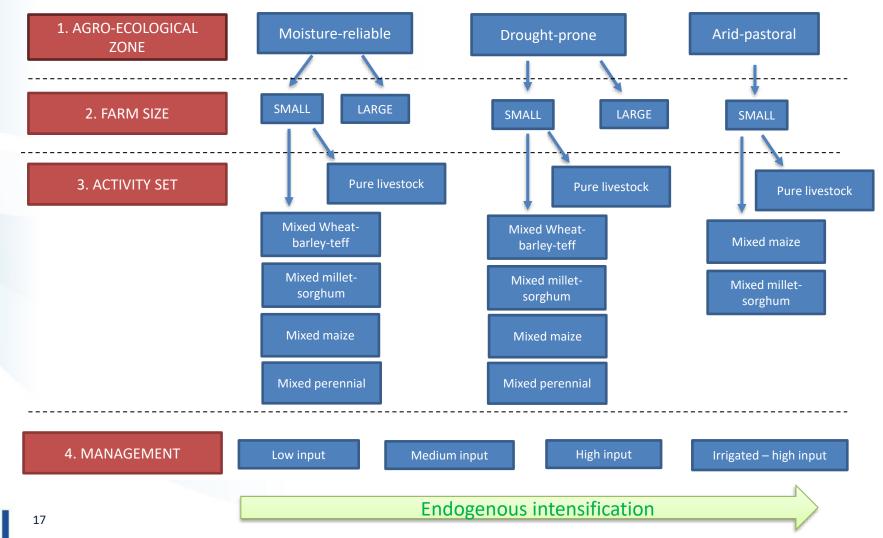


Selected country: Ethiopia

One of the poorest countries in the world... but in transition Smallholders represent 80% of the population and produce 90% of grain consumption

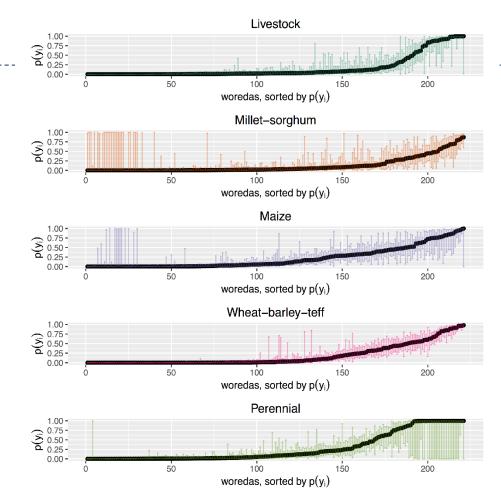
AZALL

1. Dataset construction



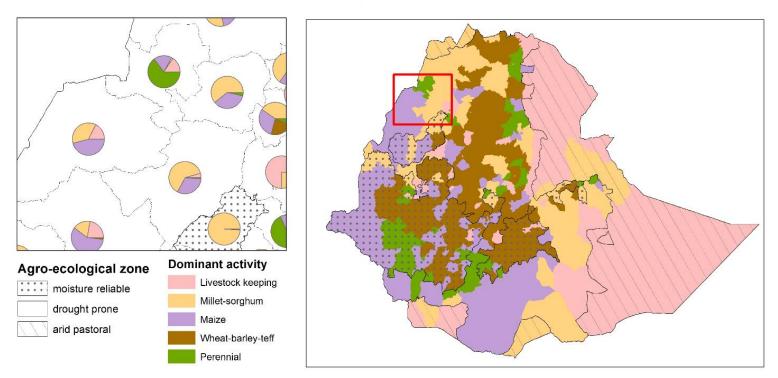
S A

New typology to represent farming systems in Ethiopia


New typology of farming systems built on 4 criteria:

S A

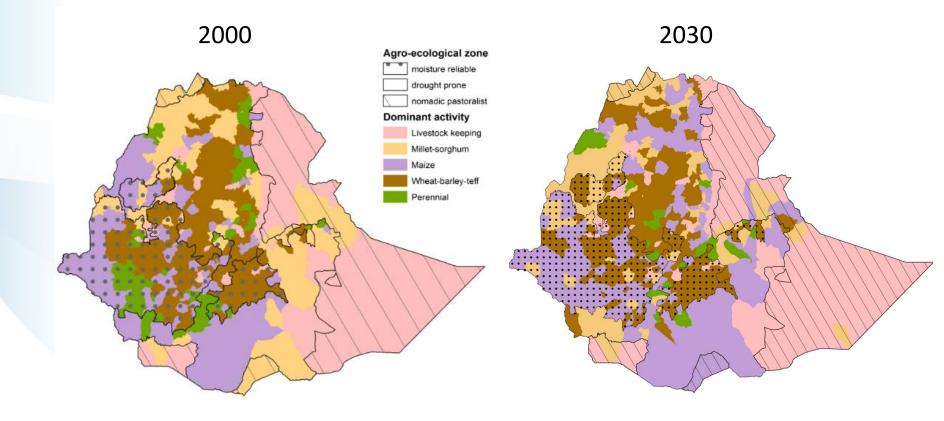
Activity set


- LSMS-ISA/ERSS data is not representative at the woreda level, nor does it cover whole country.
- Use a multinomial logit estimation to extrapolate the share of farms in each activity set per woreda

Extrapolated smallholder's activity per woreda. Points represent posterior median, error bars denote the lower 5th and the upper 95th quantile

11ASA

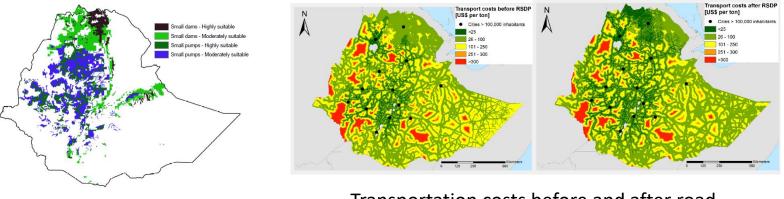
Spatial distribution of AEZ and activity-set



Dominant activity set for all woredas in Ethiopia and distribution of activity sets by woreda for a selected number of woredas

Pure livestock and millet-sorghum activity-sets dominate in arid-pastoral zone, maize in South-West, wheat-barley-teff in highlands in centre, perennials very concentrated

Evolution of farming systems: 2000-2030


Dominant activity-set by woreda

ITASA

Scenarios

Scenario	Explanation
Base	No policy scenario
Infrastructure	The development of infrastructure network to improve access to markets
Irrigation	The development of irrigation infrastructures to increase production
Fertilizer subsidy	Fertilizer subsidies to increase production
Combined	A combination of infrastructure, irrigation and fertilizer subsidy policies

Potential irrigated area from FAO (2016).

Transportation costs before and after road development

Scenario-specific results

 Scenarios show different results in terms of farm management, natural resources and food security.

	Infrastructure	Irrigation	Fertilizer subsidy	Combined
Farm management	Largest share for medium and high input use	Most intensification: Mostly towards irrigated land	Largest share for medium and high input use	Most intensification: Towards high input and irrigated land
Natural resources		Smallest uptake of cropland	Largest uptake in cropland: at the cost of forest land	Largest uptake in cropland: at the cost of forest land
Food security	Smallest increase in kcal produced and consumed			Largest increase in kcal consumed and produced
Macro- economic	Smaller decrease in prices	Smaller decrease in prices	Decrease in prices	Largest decrease in prices

 A combined scenario is most beneficial in terms of food security, the irrigation scenario might be more beneficial in terms of income and natural resource protection.

What's next?

- Heterogeneity matters, especially for impact literature using SSPs
- Both case studies: climate change impact and adaptation analysis...
 - Consumer impact
 - Farm system transformations
- Demand side and supply side presented separately
 - Closing the loop
- Extension:
 - Some more case studies: Zambia, cities?
 - Challenge of upscaling
 - Data issue... Availability, access...
 - Admin resolution, dataset harmonisation
- Global scale: reduced form models taking into account more comprehensive set of drivers

Thank you !

References

Boere E, Mosnier A, Bocqueho G, Krisztin T, & Havlik P (2016). Developing country-wide farm typologies: An analysis of Ethiopian smallholders' income and food security. In: 5th International Conference of the African Association of Agricultural Economists, September 23-26, 2016, Addis Ababa, Ethiopia.

Boere, E., Mosnier, A., Bocqueho, G., Pirker, J., Krisztin, T., Havlik, P. (2016). Modeling policy impacts on the future of smallholders using GLOBIOM: An application to Ethiopia. IFAD report, July 2017. Laxenburg, Austria.

Borkotoky, K, H. Valin et al.. "Nutrition Transition and the future Food Demand in India", in preparation.

Hasegawa, T.; Fujimori, S.; Takahashi, K. & Masui, T. (2015), 'Scenarios for the risk of hunger in the twenty-first century using Shared Socioeconomic Pathways', Environmental Research Letters 10(1), 014010.

Rao, Narasimha D. and Sauer, Petra and Pachauri, Shonali (2016) Explaining Income Inequality Trends in Countries: An Integrated Approach. INEQ Working Paper Series, 2. WU Vienna University of Economics and Business, Vienna.

