

Managing the Global Commons: Sustainable Agriculture and Use of the World's Land and Water Resources in the 21st Century

PI: Thomas W. Hertel, Co-PIs: Uris L.C. Baldos, Laura Bowling, Keith Cherkauer, Matthew Huber, David R. Johnson, Carol X. Song, Dominique van der Mensbrugghe

Discevery Park

MEETING THE GLOBAL SUSTAINABLE DEVELOPMENT GOALS ON A CHANGING PLANET WITH LIMITED LAND AND WATER RESOURCES

BIG IDEA CHALLEN GE

RESEARCH ON THE SUSTAINABLE DEVELOPMENT GOALS TYPICALLY FALLS INTO ONE OF THREE TRAPS

COMMONLY, SUSTAINABILITY RESEARCH IS TOO...

- 1) DISCIPLINARY, LIMITING THE VALIDITY OF FINDINGS
- 2) Local, Ignoring Global Context & Dynamic Feedbacks
- 3) Complex and/or Proprietary, Limiting the Replicability and Transparency of Analyses

Approach

GLASS: GLOBAL-TO-LOCAL ANALYSIS OF SYSTEMS SUSTAINABILITY

- SUSTAINABILITY STRESSES ARE OFTEN HIGHLY LOCALIZED
- But global forces drive these local stresses
- Local responses to system stresses can have global consequences

APPROACH

SIMPLE: A SIMPLIFIED INTERNATIONAL MODEL OF AGRICULTURAL PRICES, AND THE ENVIRONMENT

MODEL OUTCOMES

LONG-RUN DEMAND DRIVERS

LONG-RUN SUPPLY DRIVERS

FOOD PRICES AND PRODUCTION PROJECTIONS

LAND USE AND GHG EMISSIONS

Global market integration increases likelihood that a future African Green Revolution could increase crop land use and CO₂ emissions

Thomas W. Hertel^{1,*}, Navin Ramankutty^{1,*}, and Uris Lantz C. Baldos*

Edited by B. L. Turner, Arizona State University, Tempo, AZ, and approved August 8, 2014 (received for review February 25, 2014)

Drivers of Global Irrigation demand growth: 2006-2050 using SIMPLE-G

GLOBAL DRIVERS INCREASE LOCAL STRESSES: UNSUSTAINABLE IRRIGATION

RESTRICTING UNSUSTAINABLE IRRIGATION AT SUBBASINS HAVE BROAD IMPACT ON GLOBAL MALNUTRITION AND LAND USE

Globally,

- Crop output -16 MMT

- Undernourished pop. +800k

- Cropland area +12 Mha

- CO₂ emissions +0.87GtC

Local water stresses can be alleviated by moving physical or virtual water

Inter-basin water transfers, (Water Balance Model, UNH)

Virtual water balance 1996-2005 (Hoekstra and Mekonnen, 2011)

IMPACT OF ELIMINATING UNSUSTAINABLE IRRIGATION IN 2050

Net export of crops, million tons

Net export of virtual water, million m3

Impact of eliminating unsustainable irrigation in 2050 in the presence of IBTs

Net export of crops, million tons

Net export of virtual water, million m3

IMPACT OF ELIMINATING UNSUSTAINABLE IRRIGATION IN 2050 IN THE PRESENCE OF ENHANCED COMMODITY TRADE

APPROACH

CREATE THE INFRASTRUCTURE AND OPEN-SOURCE TOOLS NECESSARY TO DEVELOP A SELF-SUSTAINING COMMUNITY OF PRACTICE

Maps,
Data Visualization
and Exploration

Modeling Frameworks and Computation

Analysis of Tradeoffs and Synergies

Policy Briefs

Training, Courses, Crowd Sourcing Community
Interactions and
Group
Collaboration

Discovery Park

An Applied Research Consortium Focused on the Sustainable Development Goals Will Benefit a Wide Array of Stakeholders

INVESTORS SEEKING TO UNDERSTAND FUTURE INFRASTRUCTURE NEEDS

LOCAL COMMUNITIES DEVELOPING CLIMATE ADAPTATION PROJECTS AND ASSESSING RISK MANAGEMENT OPTIONS

<u>National Policy Makers</u> evaluating the consequences of local actions, including trade-offs (e.g., usda, doe, epa, fao) and adaptation options (e.g., trade, technology investments, water governance)

SCIENTIFIC COMMUNITY OF PRACTICE COMPILING A SHARED REPOSITORY OF BOUNDARY CONDITIONS, DATA AND SCENARIOS TO MEDIATE BETWEEN GLOBAL AND LOCAL STUDIES

THE PURDUE TEAM IS A MICROCOSM OF THE LARGER COMMUNITY

HYDROLOGY

CLIMATE SCIENCE

CLIMATE IMPACTS ON CROPS

GLOBAL TRADE &

SUSTAINABILITY POLICY DESIGN,

IMPLEMENTATION

CLIMATE MITIGATION

ECONOMIC MODELING

COMMUNITY INFRASTRUCTURE

ENVIRONMENTAL ECONOMICS

Keith

Matt

Huber

⊆herkauer

Tom

Hertel

David Inhacan

Dominique van

der

Mensbrugghe Uris

Baldos

Carol

Song

Jing Liu

Discovery Park

