H2: Modeling the temperature-mortality relationship under changing climate and society.

Hosts: Luís Costa, Linda Krummenauer & Veronika Huber

Contributions:

Why are we here?

Future distribution of deadly climatic conditions

Mora et al, 2017 Nature Climate Change

Adaptability limit to heat stress

Sherwood and Huber, 2010 PNAS.

Observed acclimatization (Stockholm and France).

Åström et al, 2016 Environ. Health Perspect.

Barrett, 2015 Environ. Health Perspect.

Because advances are still needed...

Investigating present MMTs

279 case study cities from literature (348 MMTs)

Regional distribution of case study cities.

Which factors drive present MMTs?

Experiments with models & variables showed...

Multivariate non-linear regression and logistic curve fit (Eq. 1)

Eq. 1
$$MMTs = \frac{c-d}{1 + \exp(-z)} + d + \varepsilon$$

MMTs apparent (AT) Minimum Mortality Temperatures in °C

Z

independent variables and parameters X_i, β_i

Potsdam 11 to 13 October 2017

С upper asymptote

d lower asymptote

error term ε

Evaluation of suggested model

Observed versus predicted MMTs

Aggregated Climate Zones (based on Köppen Geiger)

MMTs from tropical cities

- Among highest MMTs
- Lowest Amplitude values paired with highest Tmean values

MMTs from subtropics/oceanic climates

- All over the plot
- Mostly medium Amplitude and Tmean values

MMTs from continental cities

- Lowest MMTs <u>but</u> also in medium and few in the highest MMT range
- Highest Amplitude values
- Low or medium Tmean values

Estimation of present MMTs for European cities

MMT estimates for ~600 major European settlements with population > 100 000)

Cumulative population per MMT class

Because advances are still needed...

climate?

112. Widdeling the temperature-mortality relationship under changing climate and society.

Methodological considerations in projections of temperature-related health impacts under climate change scenarios – Antonio Gasparrini

Quantitative comparison of temperature-related mortality adaptation modelling methods - Simon Gosling

Future impact of heat on mortality in the Philippines, under a no-adaptation assumption - Xerxes Seposo

Evaluation of adaptation measures to heat in Switzerland: Changes in the temperature-mortality relationship between 1995 and 2013 and excess mortality during the warm summer of 2015 – Martina Ragettli

Workshop discussion : Driving forward the modelling of heat-mortality.

