

CLIMRISK MODEL DESCRIPTION AND ILLUSTRATION

CONTENTS

- . Climate module
 - Probabilistic climate change projections
- Risk measures

2. Damage functions

- Adjustment of RICE impact functions
- Persistence of shocks

3. Illustration of CLIMRISK

- Economic impacts of climate change
- Multivariate climate-economy risk measures

CLIMRISK CLIMATE MODULE PROBABILISTIC CLIMATE CHANGE SCENARIOS AND RISK MEASURES

CLIMATE MODULE

Global temperature projections

- Version 1: Uses MAGICC runs
- Version 2: Stochastic version of MAGICC (climate sensitivity and carbon cycle models)

Emissions scenarios

- RCP: RCP8.5, RCP6, RCP4.5
- SRES: A1B, A1FI, A1T, A2, B1, B2
- Policy: INDC, RCP3PD, RCP6 to RCP45, RCP4.5 to RCP3PD, WRE750, WRE650, WRE550, WRE450, WRE350

Regional climate scenarios

- Based on pattern scaling methods (e.g., Tebaldi y Arblaster, 2014), and stochastic simulation
- Version 1: Pattern scaling from 20 AOGCM CMIP3
- Versión 2: Pattern scaling from 41 AOGCM CMIP5

RCP8.5 Global temperatu

MEDIAN OF ANNUAL TEMPERATURE CHANGE (RCP8.5)

MULTIVARIATE CLIMATE RISK MEASURES: JOINT PROBABILITY OF WARMING LARGER THAN 4°C AND PCP REDUCTIONS OF MORE THAN 10% (RCP8.5)

CLIMATE RISK MEASURES: DATE ESTIMATES FOR GOING OVER A 4°C WARMING THRESHOLD

Probability 50%

CLIMRISK DAMAGE FUNCTIONS

DAMAGE FUNCTIONS IN CLIMRISK: TYPES, REGIONS AND SECTORS

Two sets of damage functions (modified and extended versions of RICE2010) :

- 1) RICE (Nordhaus and Boyer, 2003)
- 2) RICE-P including the persistence of climate shocks (Estrada et al., 2015)

Sectors and aspects included in the RICE2010 damage functions:

Agriculture (including CO₂ effect)
Health (malaria and tropical diseases, dengue and pollution)
Sea level rise
Other aspects(forestry, energy, water, construction, fisheries y outdoor recreational activities)
Human settlements and ecosystems
Climate catastrophes

Twelve world regions in RICE2010

MODIFICATION OF RICE2010 DAMAGE FUNCTIONS

Original RICE2010 functions are driven by global temperature change

These functions are modified to be driven by regional temperature changes ($0.5^{\circ}x0.5^{\circ}$) by means of a correction factor $S_{r,t}$

$$I_{r,t,i,j}^{s} = Y_{r,t,i,j} D_{r,t,i,j} S_{r,t}$$

$$S_{r,t} = \frac{I_{r,t}}{I_{r,t}^*}$$

where r represents the region; t is time; i,j, are coordinates within the region r; Y is GDP; D is the climate change damage (%).

 $I_{r,t}^*$ is the impacts from region r from the modified function and $I_{r,t}$ is the impacts for region r according to the original RICE2010 function.

PERSISTENCE OF SHOCKS IN GDP

$$I_{r,t} = Y_{r,t} D_{r,t} + \alpha_r I_{r,t-1}$$
(2)

Where $I_{r,t}$, $Y_{r,t}$ are the economic impacts and GDP in region r at time t, respectively.

The persistence is given by $0 \le \alpha_r \le 1$ and is estimated from regional GDP time series.

Estrada F., Tol R.S.J., Gay-Garcia C., 2015. The persistence of shocks in GDP and the estimation of the potential economic costs of climate change. **Environmental Modelling & Software**.

CLIMATE CHANGE EOCNOMIC IMPACTS AND MULTIVARIATE RISK MEASURES

SPATIAL DISTRIBUTION OF ECONOMIC CLIMATE CHANGE IMPACTS (SSP3, RCP8.5, RICE-P) US\$2005 BILLION DOLLARS

0.5 80 0.45 60 0.4 40 0.35 20 0.3 at 0.25 0 0.2 -20 0.15 -40 0.1 -60 0.05 -80 -150 -100 -50 0 50 100 150 long

Impactos Económicos de Cambio Climático (miles de millones de US\$2005 PPP) Año: 2010

UNIVARIATE ECONOMIC RISK MEASURES

Date impacts > 5% GDP

MULTIVARIATE CLIMATE/ECONOMIC RISK INDEX

Risk index: warming larger than 4°C; precipitation reductions larger than 10%; economic losses larger than 5% of GDP; losses larger than 1 billion US\$2005