

IMPACT WORLD 2017 CONFERENCE

THE ECONOMY OF THE SUDAN

Sources of vulnerability

IMPACT WORLD 2017 CONFERENCE

CLIMATE IN THE SUDAN

- ⇒ 1.8 million km², a vast country with considerable diversity of ecology and people,
- **C** Rainfall patterns: five vegetation zones from North to South:

1)	Desert	with 0-75	mm of precipitation,
2)	Semi-desert	with 75-300	mm,
3)	Low rainfall savannah	with 300-800	mm,
4)	High rainfall savannah	with 800-1500	mm, and
5)	Mountain vegetation	with 300-1000	mm.

MEPD, 2015

POLITICS AND STRUCTURAL CHANGES

The July 2011 secession:

LIVELIHOODS -1-

Second demand (until 2030):

- Staple foods: from 6.5 million tonnes in 2010 to 10.1 million tonnes in 2030,
- Dairy products from 6.3 to 9.7 million tonnes and sugar from 0.9 to 3.4 million tonnes,
- Between 2017 and 2030:
 - Demands increase by 35%, 56% and 157%, respectively,
 - Demands for fats and meat products increase by 100% and 22%,

Solution Food production (until 2030):

- Between 2017 and 2030:
 - Staple foods, dairy products, and sugar increase by 6.8%, 56%, 21%, respectively,
 - Fats and meat products increase by 14% and 23%, respectively.

OECD-FAO (2017)

LIVELIHOODS -2-

- The friendship between Agriculture, Rural households and Poverty in the Sudan:
 - 73% of the population live in rural areas,
 - 58% of rural households lives below the poverty line (27% for urban households),
 - The Poor are very likely reliant on agriculture: 65.4% of rural population are employed in agriculture (8.9% in urban areas).
 - 61% of households in quintile 1 rely on agriculture compared to 20% in the wealthiest quintile

Climate and Agriculture in the Sudan:

- Besides population and income growth, demand for food, water and energy, the Sudan is influenced by various environmental changes.
- Some happened in the past; several are happening and others projected to happen:
 - Frequently: increases in temperature, various floods, rainfall variability and concurrent droughts.
 - Less frequently: sea level rise, changes in seawater temperature and seawater salinity.
- Agriculture makes 1/3 of the GDP, 1/2 of foreign exchange and provides livelihoods to 65% of the people
 - 93% of annually cultivated land in the country is <u>rainfed</u> in 2016.

CBoS, 2016; MHRDL, 2013; FAO, 2017; USAID, 2016; FAO, 2015; Sayed and Abdala, 2013; Taha et al., 2013)

THE NEXUS SECTORS IN THE SUDAN

An overview

IMPACT WORLD 2017 CONFERENCE

KHALID SIDDIG

HUMBOLDT-UNIVERSITÄT ZU BERLIN

INTERNATIONAL AGRICULTURAL TRADE AND DEVELOPMENT 7

THE NEXUS SECTORS IN THE SUDAN

Inspired by Mohtar and Daher (2012)

IMPACT WORLD 2017 CONFERENCE

KHALID SIDDIG

HUMBOLDT-UNIVERSITÄT ZU BERLIN

8

AGRICULTURE - FOOD?

- Rainfed (93% of the land) and irrigated:
 - Cropping: 39% of the agricultural GDP (2015/16)
 - Livestock: 61% and
 - Forestry/fisheries: 1%.
- 56.3 million ha are arable land, only 30% is cultivated (16.9 million ha)
- Agriculture operates below its productivity potential (sorghum, cotton, groundnuts, sesame, millet and wheat)
- ➡ Fertilizer usage:
 - Ranked 129th from 155 countries.
 - Average is 7.3 kg/ha compared to 17 kg in Ethiopia (ranked 115th).

CBoS (2016); World Bank (2015); MAF (2017)

KHALID SIDDIG

12500

10000

7500

5000

2500

0

WATER AND NATURAL RESOURCES

- The Nile is the amin lotic (running) water, 1700 km within borders including Blue & White Niles and the seasonal rivers such as Atbra, Dinder and Rahad.
- **43%** of the Nile basin lies within Sudan and 72% of Sudan lies in the Nile basin
- Sesides the river Nile, other lotic waters include seasonal Baraka, El Gash, Abu Habil and Wadi El Mugaddam,
- Freshwater use:
 - Agriculture: 96.2%, Domestic: 3.5% and Industry: 0.3% in 2014.
- **Solution** Water budget:
 - Total IRWR is 4.0 billion cm/year, Total inflow is 99.3 billion cm/year (99.3% from the River Nile system and 0.7% from Eritrea).
 - Evaporation in the swamps is 19.3 billion cm/year, Natural surface water outflow to Egypt of 84.0 billion cm/year,
 - The Sudan Nile system water annual deficit is 4.0 billion cm/year (99.3-19.3-84.0 billion cm),
 - Agreement with Egypt: 65.5 billion cm/year should flow into Egypt from the Sudan. With unchanged inflow of water from the south into the Sudan: 18.5 billion cm/year from its Nile system water to Egypt.

ENERGY

- Primary sources of energy in the Sudan: hydropower, petroleum and bioenergy,
- Contributions: to total energy mix in 2013 were 5.6%, 40.0% and 54.4%, respectively,
- Plans to generate 4.4 terawatt by 2031:
 - Hydropower generation (23% of total expansions):
 - Northern state (29% of the new hydropower extensions), where Kajbar and Dal dams.
 - The remaining 71% from two dams in the River Nile state, Shereik and Dagash dams.
 - Thermal power generation (77%):
 - 8 stations in the Red Sea state (97% of planned additional thermal power generation),
 - One station in Khartoum state and another
 - ➡ One station in Northern state.

HUMBOLDT-UNIVERSITÄT ZU BERLIN

MOTIVATIONS-OBJECTIVES

What do we know about climate change impact on the Sudan?

CLIMATE IMPACT ON THE SUDAN

Drought	Rainfall va	riability	Floods		Temperature increase	te	Seawat mperat	er ture	Sea level rise	
Agriculture Loss of productive land, pasture and water due to expanded desertification 		Water resources Increased evaporation from water storage facilities, reducing water supply			 Costal zones Intensification of storm surges and cyclones, damaging existing infrastructure Increase in seawater temperature damages coral reef systems through bleaching Increase in seawater temperature damages mangrove systems Increase in sea-surface temperature damages sea grass and salt marsh ecosystems 			 Energy Increased evaporation in water storage areas and reduced river flows, resulting in reduced water availability for hydropower 		
 Shortened growing sec yields and/or crop fail Conflict between past farmers over resource Rural to urban migrat on rural livelihoods Damage of crops, agric infrastructure 	 Shortened growing season and reduced yields and/or crop failure Conflict between pastoralists and farmers over resources Rural to urban migration due to strain on rural livelihoods Damage of crops, agricultural land and infrastructure 		 Decreased river flows from the Nile, leading to reduced availability of water for irrigation, drinking and sanitation Conflict over rights and access to water at the local, national and regional levels 					Every consumption Increased energy consumption Every consumption Stressor Sector Impact Affected communities and areas		
 <u>Communities:</u> poor farme senior citizens, children o <u>Areas:</u> northern, middle parts 	ers, poor people, and women and middle western	 <u>Communities</u> communities <u>Areas</u>: all the temperature 	<u>e</u> poor farmers, pastoralists, relying on rainfed agriculture country especially areas with rise of 2.5°C.		 <u>Communities:</u> pastoralists, c flood areas, poor farmers <u>Areas:</u> south, mountainous c northern east and southern 	ommunities in areas in east	•	<u>Communities:</u> of the Red Sea <u>Areas:</u> Red Sea and all the cou	communities in coastal areas a state a state with the direct impact antry indirectly	

0 wn elaboration

IMPACT WORLD 2017 CONFERENCE

KHALID SIDDIG

HUMBOLDT-UNIVERSITÄT ZU BERLIN

13

METHODS

An overview

IMPACT WORLD 2017 CONFERENCE

KHALID SIDDIG

HUMBOLDT-UNIVERSITÄT ZU BERLIN

INTERNATIONAL AGRICULTURAL TRADE AND DEVELOPMENT

THE NEXUS MODELING SUITE

The interplay between water, food and energy and its main drivers

THE NEXUS MODELING SUITE

Enhanced from Al-Riffai et al. (2017)

SIMULATION SCENARIOS

[1] Global climate = global food prices
[2] Local climate = local yield changes
[3] Climate variability
[4] A nexus intervention

IMPACT WORLD 2017 CONFERENCE

BASELINE DEVELOPMENT

- Population growth from the UN with 2.17 in 2013 to 2.07 in 2030,
- Labor supply took the growth rates of the population
- GDP growth rates until 2022 from the IMF-WEO (2017) and preserved afterward,
- Government consumption spending from IMF-WEO (2017),
- GDP growth rates are met using TFP, while meeting the sectoral (agriculture, industry and services) shares until 2016 and sustaining them afterwards.

KHALID SIDDIG

18

[1] EFFECTS ON GLOBAL FOOD PRICES (2017=100)

IMPACT WORLD 2017 CONFERENCE

KHALID SIDDIG

HUMBOLDT-UNIVERSITÄT ZU BERLIN

19

[2] LOCAL YIELD CHANGES (2017=100)

IMPACT WORLD 2017 CONFERENCE

KHALID SIDDIG

HUMBOLDT-UNIVERSITÄT ZU BERLIN

[3] STOCHASTIC VARIATIONS IN CROPS YIELD

- Economic simulation models are often deterministic in nature, thus results are dependent on point estimates of key exogenous variables,
- Uncertain factors: extreme weather, stock, energy prices, growing food demand affected the international agricultural markets (Tangermann, 2011),
- S Hence, incorporating uncertainties in economic simulation models of agricultural markets is necessary,
- Solution We simulated 10,000 random values for each stochastic variable (1984 -2014),
- We assured that simulated matrix and the matrix of historical deviates have the same means and equivalent correlation matrices at 5% level,
- Solution We generated three scenarios corresponding to 95% quantile, mean, and 5% quantile values, respectively.

Policy focus	Policy Intervention	Water Security	Energy Security	Food Security
Food	Encountering yield changes by adjusting crops productivity in the irrigated and rainfed sectors. The objective is the restoring agricultural GDP to its NoCC level	Direct (-) Increased demand for irrigation water	Direct (-) Increased demand for energy in agriculture	Direct (+), indirect (+/-) Increased production Increased imports
Energy		Direct (+)	Direct (+)	Direct (+/-), indirect (+/-)
Water		Direct (+)	Direct (-)	Direct (+), indirect (+)
				Inspired by Nielson et al. (2015)

IMPACT WORLD 2017 CONFERENCE

PRELIMINARY RESULTS

[1]Changes driven by local yields and globalfood prices

GDP AT FACTOR COSTS (AVERAGE ANNUAL GROWTH %)

OLD T-UNIL W

MACROECONOMIC INDICATORS (SELECTION)

CGE model results

KHALID SIDDIG

HUMBOLDT-UNIVERSITÄT ZU BERLIN

PRELIMINARY RESULTS

[2] Stochastic variations in crops yield

IMPACT WORLD 2017 CONFERENCE

HUMBOLDT-UNIVERSITÄT ZU BERLIN

MACROECONOMIC INDICATORS

IMPACT WORLD 2017 CONFERENCE

KHALID SIDDIG

HUMBOLDT-UNIVERSITÄT ZU BERLIN

INTERNATIONAL AGRICULTURAL TRADE AND DEVELOPMENT

AVERAGE ANNUAL CHANGE IN EQUIVALENT VARIATION (% 2013-2050)

PRELIMINARY RESULTS

[3] A nexus intervention

MACROECONOMIC INDICATORS

IMPACT WORLD 2017 CONFERENCE

CGE model results

KHALID SIDDIG

HUMBOLDT-UNIVERSITÄT ZU BERLIN

AVERAGE ANNUAL CHANGE IN EQUIVALENT VARIATION (% 2013-2030)

CGE model results

CONCLUSIONS

Summary and implications

IMPACT WORLD 2017 CONFERENCE

KHALID SIDDIG

HUMBOLDT-UNIVERSITÄT ZU BERLIN

CONCLUSIONS

- Projected local yield and global food price changes trigger good performance at the macro level,
- Empirical evidence suggest rainfall variations and fluctuating crop yields,
- Adding some uncertainty to the model resulted in considerable negative effects,
- Productivity enhancement by 2% in irrigated and 3% in rainfed sector could encounter the yield shocks and restore agricultural GDP and GDP at FC to their NoCC level,
- This lead to a higher GDP at MP, total exports, total imports and total absorption compared to those of NoCC,
- For households however, average annual changes in equivalent variation are slightly lower under the Nexus Scenario than the NoCC,
- Other nexus interventions are to be implemented.

SOURCES Full list

SOURCES

- Al-Riffai, P., Breisinger, C., Mondal, A., Ringler, C., Wiebelt, M, and T. Zhu (2017). Linking the Economics of Water, Energy, and Food: A Nexus Modeling Approach. Egypt SSP working paper 04, April 2017.
- CBoS (2017). The 56th Annual Report of the Central Bank of the Sudan (CBoS). <u>http://www.cbos.gov.sd/sites/default/files/annual2016.pdf</u>
- CBS (2009). National Benchmark Household Survey. Central Bureau of Statistics, Khartoum, Sudan.
- Diao, X. and J. Thurlow. "A Recursive Dynamic Computable General Equilibrium Model." In Strategies and Priorities for African Agri-culture: Economywide Perspectives from Country Studies edited by X. Diao, J. Thurlow, S. Benin, and S. Fan, 17:50. Washington D.C., US: International Food Policy Research Institute.
- FAO (2016). AQUASTAT website. Food and Agriculture Organization of the United Nations (FAO). http://www.fao.org/nr/water/aquastat/countries_regions/SDN/. Accessed on September 4, 2017.
- Signification and the second s
- S Mohtar, R. and B. Daher (2012). Water, energy, and food: the ultimate nexus. Encyclopedia of Agricultural, Food, and Biological Engineering, Second Edition D OI: 10.1081/E-EAFE2-120048376.
- S MEPD (2015). National Biodiversity Strategy and Action Plan 2015 -2020. Higher Council for Environment and Natural Resources, Ministry of Environment, Natural Resources and Physical Development, Republic of Sudan.
- Sudan Labor, Khartoum, the Sudan. Sudan Labor, Sudan Labor, Khartoum, the Sudan.
- S MAF (2017). Ministry of Agriculture and Forestry. General Administration of Planning and Agricultural Economics. Unpublished data on crops production, area and yield.
- S Ministry of Petroleum (2014). Country Paper, the Sudan. Tenth Arab Energy Conference. UAE, December 2014. Ministry of Petroleum, Republic of the Sudan.
- Sayed, Mohamed Abdelaty and Abdala, Babiker (2013). Sudan Environmental and Climate Change Assessment. International Fund for Agricultural Development (IFAD). ECCA No. 3226-SD.
- USAID (2016). Climate Change Risk in Sudan: Country Fact Sheet. United States Agency for International Development.
- Siddig, K., Elagra, S., Grethe, H., and A. Mubarak (2016). A Post-Separation Social Accounting Matrix for the Sudan Working Paper 92 (2016). Department of Agricultural Economics, Faculty of Life Sciences, Humboldt-Universität zu Berlin.
- Taha, Abdelmoneim; Thomas, Timothy S. and Waithaka, Michael (2013). Sudan. In East African agriculture and climate change: A comprehensive analysis. Eds. Waithaka, Michael; Nelson, Gerald C.; Thomas, Timothy S. and Kyotalimye, Miriam. Chapter 10. Pp. 279-311. Washington, D.C.: International Food Policy Research Institute (IFPRI) https://ebrary.ifpri.org/cdm/ref/collection/p15738coll2/id/127933
- Sull (2015). United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects: The 2015 Revision, custom data acquired via website.
- Sworld Bank (2017). World Bank World Development Indicators (2017). http://data.worldbank.org/products/wdi
- World Bank Group (2015). Sudan Country Economic Memorandum: Realizing the Potential for Diversified Development. World Bank, Washington, DC. © World Bank. https://openknowledge.worldbank.org/handle/10986/25262 License: CC BY 3.0 IGO.